Semiparametric time series models driven by latent factor

نویسندگان

چکیده

We introduce a class of semiparametric time series models by assuming quasi-likelihood approach driven latent factor process. More specifically, given the process, we only specify conditional mean and variance enjoy function for estimating parameters related to mean. This proposed methodology has three remarkable features: (i) no parametric form is assumed distribution process; (ii) able modelling non-negative, count, bounded/binary real-valued series; (iii) dispersion parameter not be known. Further, obtain explicit expressions marginal moments autocorrelation process so that method can employed also Simulated results aiming check estimation procedure are presented. Real data analysis on unemployment rate precipitation illustrate potencial practice our methodology.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric latent factor models

We propose a semiparametric model for regression and classification problems involving multiple response variables. The model makes use of a set of Gaussian processes to model the relationship to the inputs in a nonparametric fashion. Conditional dependencies between the responses can be captured through a linear mixture of the driving processes. This feature becomes important if some of the re...

متن کامل

Semiparametric Bootstrap Prediction Intervals in time Series

One of the main goals of studying the time series is estimation of prediction interval based on an observed sample path of the process. In recent years, different semiparametric bootstrap methods have been proposed to find the prediction intervals without any assumption of error distribution. In semiparametric bootstrap methods, a linear process is approximated by an autoregressive process. The...

متن کامل

Semiparametric Bayesian latent trajectory models

Latent trajectory models (LTMs) characterize longitudinal data using a finite mixture of curves. We address uncertainty in the number of latent classes and in the form of the class-specific curves using a semiparametric Bayesian approach. A mixture of functional Dirichlet processes (FDP) is used to characterize the distribution of longitudinal trajectories. The FDP is defined by replacing the a...

متن کامل

Semiparametric Estimation in Multivariate Nonstationary Time Series Models

A system of multivariate semiparametric nonlinear time series models is studied with possible dependence structures and nonstationarities in the parametric and nonparametric components. The parametric regressors may be endogenous while the nonparametric regressors are assumed to be strictly exogenous. The parametric regressors may be stationary or nonstationary and the nonparametric regressors ...

متن کامل

Copula-based semiparametric models for multivariate time series

The authors extend to multivariate contexts the copula-based univariate time series modeling approach of Chen & Fan [X. Chen, Y. Fan, Estimation of copula-based semiparametric time series models, J. Econometrics 130 (2006) 307–335; X. Chen, Y. Fan, Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification, J. Econometrics 135 (2006) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Forecasting

سال: 2021

ISSN: ['1872-8200', '0169-2070']

DOI: https://doi.org/10.1016/j.ijforecast.2020.12.007